

The performance of air disinfection units using UV-C Light is related to the dose of UV-C Light received by the micro-organisms, set against the time of exposure. The higher the dose of UV-C Light, or the longer the exposure period, the greater the kill.

A further factor that will determine optimal performance, and more importantly, the size of a room that can be efficiently disinfected, is the likely contaminant load present, the likely rate of future contamination of the room, and the risk posed by any presence of micro-organisms.

Performance

The VECTOTHOR AIR160 uniquely uses a Philips 60 W UV-C lamp, within a specialised aluminiumlined Disinfection Chamber, to provide optimal performance and a high dose of UV-C Light. The Table below, provides data on the effectiveness of UV-C Light in destroying various microorganisms. The following explanation will help understand the data.

Dose

To achieve a Log 1 reduction in the numbers of a virus or bacteria, (which represents a 90% reduction in the population), requires a known dose of UV-C Light. E.g. To reduce

a Bacillus anthracis infestation by 90%, a UV dose of 45.2 mJ/cm² is required;

an influenza virus infestation by 90%, a UV dose of 36 mJ/cm² is required.

The UV dose as shown in the Table, in mJ/cm², can also be expressed as mW S/cm².

So, 45.2 mJ/cm² is the same 45.2 mW S/cm², which can be calculated by the formula:

Lamp power (in mW/cm²) x the retention time of the air (in seconds)

The variable that we employ with the VECTOTHOR AIR160 is the speed of the air flow. By reducing the air flow by a factor of two (going down from 100m³/hr to 50m³/hr) we <u>increase</u> the retention time of the air in the UV-C Disinfection Chamber two-fold, which results in offering a significantly higher dose of UV-C to the micro-organisms as they pass through the UV-C Disinfection Chamber.

This means we achieve an increase in the reduction of our *Bacillus anthracis* or influenza virus from 90% up to 99% (a log 2 reduction) simply by controlling the air flow rate.

Time

If we extend the time factor by which we measure the performance of the VECTOTHOR AIR160, we will see noticeable improvement in the elimination of micro-organisms. The more times the air passes through the VECTOTHOR AIR160, the greater the reduction of the micro-organisms. Smaller micro-organisms also have a thinner cell wall, which is much easier to penetrate with UV-C Light; which then destroys the reproduction mechanism of these micro-organisms faster. This makes the VECOTHOR AIR160 particularly effective in eliminating viruses, which are not affected by filtration systems due to their tiny size.

YOUR AIR B

3-WAY POWER

We confirm the VECTOTHOR AIR160 will, in a single pass of air through the unit, which will typically occur in 2 hours for a 100 m³ room, disinfect and purify the air up to 90%.

If we run the unit for 24 hours, it disinfects and purifies the air up to 99.99%.

UV dose to obtain 90% killing rat	e	UV dose to obtain 90% killing rate			
Bacteria	Dose	k	Yeasts	Dose	k
Bacillus anthracis	45.2	0.051	Bakers' yeast	39	0.060
B. megatherium sp. (spores)	27.3	0.084	Brewers' yeast	33	0.070
B. megatherium sp. (veg.)	13.0	0.178	Common yeast cake	60	0.038
B. parathyphosus	32.0	0.072	Saccharomyces cerevisiae	60	0.038
B. suptilis	71.0	0.032	Saccharomyces ellipsoideus	60	0.038
B. suptilis spores	120.0	0.019	Saccharomyces sp.	80	0.029
Campylobacter jejuni	11.0	0.209			
Clostridium tetani	120.0	0.019			
Corynebacterium diphteriae	33.7	0.069	Mould spores		
Dysentery bacilli	22.0	0.105	Aspergillus flavus	600	0.003
Eberthella typhosa	21.4	0.108	Aspergillus glaucus	440	0.004
Escherichia coli	30.0	0.077	Aspergillus niger	1320	0.0014
Klebsiella terrifani	26.0	0.089	Mucor racemosus A	170	0.013
Legionella pneumophila	9.0	0.256	Mucor racemosus B	170	0.013
Micrococcus candidus	60.5	0.038	Oospora lactis	50	0.046
Micrococcus sphaeroides	100.0	0.023	Penicillium digitatum	440	0.004
Mycobacterium tuberculosis	60.0	0.038	Penicillium expansum	130	0.018
Neisseria catarrhalis	44.0	0.053	Penicillium roqueforti	130	0.018
Phytomonas tumefaciens	44.0	0.053	Rhizopus nigricans	1110	0.002
Pseudomonas aeruginosa	55.0	0.042			
Pseudomonas fluorescens	35.0	0.065			
Proteus vulgaris	26.4	0.086	Virus		
Salmonella enteritidis	40.0	0.058	Hepatitis A	73	0.032
Salmonella paratyphi	32.0	0.072	Influenza virus	36	0.052
Salmonella typhimurium	80.0	0.029	MS-2 Coliphase	186	0.0012
Sarcina lutea	197.0	0.012	Polio virus	58	0.040
Seratia marcescens	24.2	0.095	Rotavirus	81	0.078
Shigella paradysenteriae	16.3	0.141	Notari us	01	0.020
Shigella sonnei	30.0	0.077			
Spirillum rubrum	44.0	0.053	Duratarras		
Staphylococcus albus	18.4	0.126	Protozoa	25	0.000
Staphylococcus aureus	26.0	0.086	Cryptosporidium parvum	25	0.092
Streptococcus faecalis	44.0	0.052	Giardia lamblia		0.209
Streptococcus hemoluticus	21.6	0.106			
Streptococcus lactus	61.5	0.037			
Streptococcus viridans	20.0	0.115			
Sentertidis	40.0	0.057	Algae		
Vibrio chlolerae (V.comma)	35.0	0.066	Blue Green	3000	0.0008
Yersinia enterocolitica	11.0	0.209	Chlorella vulgaris	120	0.019

What about K? K is a lesser known method to calculate how much UV-C energy a micro-organism needs to receive to achieve a reduction. K is actually the inactivation constant rate given in m^2/J . Dose is accepted and known by 99% of modern scientists; K has become 'old-school thinking'.

Room Size

The smaller the room the more efficient the performance. The VECTOTHOR AIR160 was optimised to provide maximum performance and efficiency, e.g. for use in a pharmaceutical clean room, on a room size of 100 m³. If the room size is increased, the time to achieve 99.99% elimination of the viruses present will be increased. Of course, if there is less likelihood of a high viral loading, or if there is reduced risk for heavy viral infection, the VECTOTHOR AIR160 will provide adequate performance and a significant improvement in the health and purity of the air in a larger room.

Use of the VECTOTHOR AIR160 may therefore be considered as follows:

Risk Situation	AIR160 will treat	E.g.
High Risk	Up to 100 m ³	Electrical or pharmaceutical clean room, hospital or medical facility/ surgery.
Moderate Risk	Up to 200 m ³	Doctor's waiting room, childcare centre.
Normal Risk	Up to 300 m ³	Household, office, public lounge.